from grid.model.perception.vlm.molmo import Molmo
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = Molmo(use_local = False)
result = model.run(image=img, prompt=<prompt>)
print(result)
The Molmo class provides core functionality for this module.
class Molmo()
use_local
boolean
default:"False"
If True, inference call is run on the local VM, else offloaded onto GRID-Cortex. Defaults to False.
def run()
image
np.ndarray
required
The input RGB image of shape (M,N,3)(M,N,3).
prompt
str
required
The question to answer about the media.
Returns
str
The response to the prompt.
from grid.model.perception.vlm.molmo import Molmo
car = AirGenCar()

# We will be capturing an image from the AirGen simulator 
# and run model inference on it.

img =  car.getImage("front_center", "rgb").data

model = Molmo(use_local = False)
result = model.run(image=img, prompt=<prompt>)
print(result)
This code is licensed under the Apache 2.0 License.