from grid.model.perception.slam.dpv_slam import DPVSLAMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").datamodel = DPVSLAM(use_local = True)result = model.run(image=img)
The DPVSLAM class implements DPV-SLAM using loop closure for globally consistent
trajectory estimation and mapping.
from grid.model.perception.slam.dpv_slam import DPVSLAMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").datamodel = DPVSLAM(use_local = True)result = model.run(image=img)
from grid.model.perception.slam.dpv_slam import DPVSLAMcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").datamodel = DPVSLAM(use_local = True)result = model.run(image=img)
Assistant
Responses are generated using AI and may contain mistakes.