The MIDAS class provides a wrapper for the MIDAS model, which estimates depth
maps from RGB images using the DPTForDepthEstimation model.
If True, inference call is run on the local VM, else offloaded onto GRID-Cortex. Defaults to False.
The input RGB image of shape (M,N,3). The predicted depth map of shape (M,N).
from grid.model.perception.depth.midas import MIDAS
car = AirGenCar()
# We will be capturing an image from the AirGen simulator
# and run model inference on it.
img = car.getImage("front_center", "rgb").data
model = MIDAS(use_local = False)
result = model.run(rgbimage=img)
print(result.shape)
This code is licensed under the Apache 2.0 License.