The OneFormer class provides core functionality for this module.
If True, inference call is run on the local VM, else offloaded onto GRID-Cortex. Defaults to False.
The input RGB image of shape (M,N,3). The mode of segmentation. Can be either “semantic” or “panoptic”. Defaults to “semantic”.
The predicted segmentation mask of shape (M,N).
from grid.model.perception.segmentation.oneformer import OneFormer
car = AirGenCar()
# We will be capturing an image from the AirGen simulator
# and run model inference on it.
img = car.getImage("front_center", "rgb").data
model = OneFormer(use_local = False)
result = model.run(rgbimage=img, mode="semantic")
print(result.shape)
This code is licensed under the MIT License.