from grid.model.navigation.visualservoing import VisualServoingcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").datamodel = VisualServoing(use_local = True)delta_yaw, velocity = model.run( (100, 100), { "width": 640, "height": 480, "fov": 90, "camera_orientation_euler_pry": (0, 0, 0), },)print(f"delta_yaw: {delta_yaw}, velocity: {velocity}")
The VisualServoing class provides core functionality for this module.
from grid.model.navigation.visualservoing import VisualServoingcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").datamodel = VisualServoing(use_local = True)delta_yaw, velocity = model.run( (100, 100), { "width": 640, "height": 480, "fov": 90, "camera_orientation_euler_pry": (0, 0, 0), },)print(f"delta_yaw: {delta_yaw}, velocity: {velocity}")
This code is licensed under the Apache 2.0 License.
from grid.model.navigation.visualservoing import VisualServoingcar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").datamodel = VisualServoing(use_local = True)delta_yaw, velocity = model.run( (100, 100), { "width": 640, "height": 480, "fov": 90, "camera_orientation_euler_pry": (0, 0, 0), },)print(f"delta_yaw: {delta_yaw}, velocity: {velocity}")
Assistant
Responses are generated using AI and may contain mistakes.