from grid.model.perception.matching.glightglue import LightGluecar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").dataimg1 = img.copy()model = LightGlue(use_local = False)matches1, points0_1, points1_1 = model.run(img, img1)
The LightGlue model computes point matches
between two images using SuperPoint and LightGlue.
Feature points detected in image 2 of shape (K,2).
Copy
Ask AI
from grid.model.perception.matching.glightglue import LightGluecar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").dataimg1 = img.copy()model = LightGlue(use_local = False)matches1, points0_1, points1_1 = model.run(img, img1)
This code is licensed under the Apache 2.0 License.
from grid.model.perception.matching.glightglue import LightGluecar = AirGenCar()# We will be capturing an image from the AirGen simulator # and run model inference on it.img = car.getImage("front_center", "rgb").dataimg1 = img.copy()model = LightGlue(use_local = False)matches1, points0_1, points1_1 = model.run(img, img1)
Assistant
Responses are generated using AI and may contain mistakes.